

ELEMENTS of Physical Chemistry

PETER ATKINS & JULIO DE PAULA

7th edition

Fundamental constants

Quantity	Symbol	Value	Power of 10	Units
Speed of light	С	2.997 924 58	10 ⁸	m s ⁻¹
Elementary charge	е	1.602 176 621	10 ⁻¹⁹	С
Planck's constant	h	6.626 070 040	10 ⁻³⁴	Js
	$\hbar = h/2\pi$	1.054 571 800	10 ⁻³⁴	Js
Boltzmann's constant	k	1.380 648 52	10 ⁻²³	J K ⁻¹
Avogadro's constant	N _A	6.022 140 857	10 ²³	mol ⁻¹
Gas constant	$R = N_A k$	8.314 459 8		J K ⁻¹ mol ⁻¹
Faraday's constant	F=N _A e	9.648 533 289	10 ⁴	C mol ⁻¹
Mass				
electron	m _e	9.109 383 52	10 ⁻³¹	kg
proton	m _o	1.672 621 898	10 ⁻²⁷	kg
neutron	m	1.674 927 471	10 ⁻²⁷	kg
atomic mass constant	m _u	1.660 539 040	10 ⁻²⁷	kg
Vacuum permeability	μ_0	4π	10 ⁻⁷	J s ² C ⁻² m ⁻¹
Vacuum permittivity	$\varepsilon_0 = 1/\mu_0 c^2$	8.854 187 817	10 ⁻¹²	J ⁻¹ C ² m ⁻¹
	$4\pi\varepsilon_0$	1.112 650 056	10 ⁻¹⁰	J ⁻¹ C ² m ⁻¹
Bohr magneton	$\mu_{\rm B} = e\hbar/2m_{\rm e}$	9.274 009 994	10 ⁻²⁴	J T ⁻¹
Nuclear magneton	$\mu_{\rm N} = e\hbar/2m_{\rm p}$	5.050 783 699	10 ⁻²⁷	JT ⁻¹
Proton magnetic moment	μ_{p}	1.410 606 787	10 ⁻²⁶	JT ⁻¹
g-Value of electron	g _e	2.002 319 304		
Magnetogyric ratio				
electron	$\gamma_{\rm e} = -g_{\rm e} e/2m_{\rm e}$	-1.001 159 652	10 ¹⁰	C kg ⁻¹
proton	$\gamma_{\rm p}=2\mu_{\rm p}/\hbar$	2.675 222 004	10 ⁸	C kg ⁻¹
Bohr radius	$a_0 = 4\pi\varepsilon_0\hbar^2/e^2m_{\rm e}$	5.291 772 107	10 ⁻¹¹	m
Rydberg constant	$R_{\rm m} = m_{\rm e}e^4/8h^3c\varepsilon_0^2$	1.097 373 157	10 ⁵	cm ⁻¹
	hcR_/e	13.605 692 53		eV

* The values quoted here were extracted in February 2016 from the National Institute of Standards and Technology (NIST) website (search term: physical constants).

Elements of Physical Chemistry

Peter Atkins

University of Oxford

Julio de Paula Lewis & Clark College

With contributions from

David Smith University of Bristol

7th EDITION

OXFORD

UNIVERSITY PRESS

Great Clarendon Street, Oxford, OX2 6DP United Kingdom

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries

© Peter Atkins and Julio de Paula 2017

The moral rights of the authors have been asserted

Fourth edition 2005 Fifth edition 2009 Sixth edition 2013 Impression: 1

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, by licence or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above

> You must not circulate this work in any other form and you must impose this same condition on any acquirer

Published in the United States of America by Oxford University Press 198 Madison Avenue, New York, NY 10016, United States of America

> British Library Cataloguing in Publication Data Data available

Library of Congress Control Number: 2016953953

ISBN 978-0-19-872787-3 (UK Edition) ISBN 978-0-19-879670-1 (US Edition)

Printed in Italy by L.E.G.O. S.p.A.

Links to third party websites are provided by Oxford in good faith and for information only. Oxford disclaims any responsibility for the materials contained in any third party website referenced in this work.

Using this book to master physical chemistry

Organizing the information

Innovative new structure

Instead of being organized into chapters, the material is now presented as short 'Topics', which are collected into 15 'Focus' sections. At the beginning of each Focus, the relationships between the different Topics are discussed, to show you the connections between different areas of physical chemistry and help you see the bigger picture. Each Topic opens with three questions: why is it important? What is the key idea? And what do you need to know already to understand the material? While the Topics – and Focuses – are interconnected, each Topic is also readable as a stand-alone unit, and can therefore be read in any order.

> Why do you need to know this material?

Energy is central to almost every explanation in chemistry, and is defined in terms of work. This Topic also introduces some fundamental definitions of the concepts used in thermodynamics.

> What is the key idea?

One procedure for transferring energy is by doing work, the process of moving against an opposing force.

What do you need to know already?

You need to be familiar with the definition of work, which is summarized in *The chemist's toolkit* 7, and the perfect gas equation (Topic 1A). Integration methods are summarized in *The chemist's* toolkit 8.

The prologue: Energy, temperature, and chemistry

You should first read this brief introduction to the Boltzmann distribution, as it introduces basic concepts that are used throughout the text.

Checklist of key concepts

The principal concepts introduced in each Topic are summarized in a checklist at the end of each one.

Checklist of key concepts

- □ 1 A spectrometer is an instrument that detects the characteristics of radiation absorbed, emitted, or scattered by atoms and molecules.
- In emission spectroscopy, an atom or molecule undergoes a transition from a state of high energy to a state of lower energy, and emits the excess energy as a photon.
- In absorption spectroscopy, the net absorption of incident radiation is monitored as the frequency is varied.

Resource section

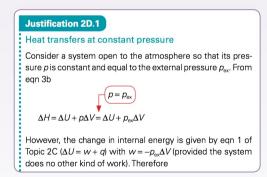
Thermodynamic, kinetic, and spectroscopic data help you to understand trends in chemical and physical properties and become familiar with the magnitudes of properties. However, long tables can break up the flow of the text and be hard to find, so where appropriate they have been collected at the end of the book.

A note on good practice

The 'notes on good practice' have been written to help you avoid making common mistakes. They encourage you to conform to the international language of science adopted by the International Union of Pure and Applied Chemistry (IUPAC).

A note on good practice Write ΔU for the change in internal energy because it is the difference between the final and initial values. You should not write Δq or Δw because it is meaningless to refer to a 'difference of heat' or a 'difference of work': q and w are the quantities of energy transferred as heat and work, respectively, that result in the change ΔU .

Getting to grips with the mathematics


Annotated equations and equation labels

We have annotated many equations so that you can follow how they are developed. A red label takes you across the equals sign: it is a reminder of the substitution used, an approximation made, or the terms that have been assumed constant. A red annotation is a reminder of the significance of an individual term in an expression. Many of the equations are also labelled to highlight their significance. We sometimes colour a collection of numbers or symbols to show how they carry from one line to the next.

$$\Delta V = \stackrel{n_{\rm f} RT/\rho_{\rm ex}}{\widehat{V}_{\rm f}} - \stackrel{n_{\rm f} T/\rho_{\rm ex}}{\widehat{V}_{\rm i}} = \frac{RT\Delta n_{\rm g}}{\rho_{\rm ex}}$$

Justifications

Mathematical development is an intrinsic part of physical chemistry, and to achieve full understanding you need to see how a particular expression is derived and if any assumptions have been made.

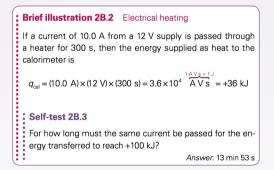
Chemist's toolkits

The chemist's toolkits provide succinct reminders of the mathematical concepts and techniques that you will need in order to understand a particular derivation, and appear just where they are likely to be most helpful to you.

The chemist's toolkit 7 Work and energy

Work, *w*, is done when a body is moved against an opposing force. If that force is constant, then the magnitude of the work done, |w|, is the product of the magnitude of the force, *F*, and the distance, *d*, through which the body is moved:

|w| = Fd


Work done against an opposing force

Mechanical work is done on a body when it is raised through a vertical distance against the force of gravity.

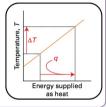
Becoming a problem solver

Brief illustrations

Brief illustrations are short examples of how to use the equations introduced in the text. Each Brief illustration is accompanied by a 'self-test' question, which you can use to monitor your progress.

Examples

In each Example we suggest how to 'Collect your thoughts' by organizing the information in a problem and then finding its solution. An accompanying simple diagram illustrates the problem-solving process. Use the 'self-tests' following each Example to check that you have mastered the concepts being introduced.


Example 2B.1

• • • • • • •

Calculating a temperature change from the heat capacity

Suppose a 1.0 kW kettle contains 1.0 kg of water and is turned on for 100 s. By how much does the temperature of the water change if all the heat is transferred to the water?

Collect your thoughts You can suppose initially that the water is not heated so much that it boils, but you will have to verify that once the calculation has been car-ried out. The calculation hinges on being able to use the data to calculate the energy supplied to the

Questions at the end of each Focus

The Exercises allow you to assess your grasp of the material that has just been introduced, and are based on a specific Topic. Discussion questions are designed to help you think about the material conceptually before tackling more complex numerical questions. Problems are more challenging questions based on the material in the Focus. Projects require you to explore specific ideas in more detail. Projects involving calculus are indicated by the symbol **‡**.

Solutions manual

The accompanying Solutions Manual [ISBN: 978-019-879865-1 (UK Edition); 978-019-880225-9 (US Edition)] provides full, detailed solutions to the Discussion questions, Exercises, Problems, and Projects.

Online Resource Centre

When the Online Resource Centre to accompany *Elements of Physical Chemistry* seventh edition provides a number of useful teaching and learning resources for lecturers and students.

The site can be accessed at: www.oxfordtextbooks.co.uk/orc/echem7e/

Student resources:

Impact sections

The 'Impact' sections show how the principles of physical chemistry developed in the book are being applied to a selection of modern problems in a variety of disciplines.

Multiple choice questions

A bank of auto-marking multiple choice questions, with worked-out solutions, is provided for each Focus. Make the most of these questions to cement your knowledge and use them to draw your attention to areas where you need further study.

Answers to end-of-Focus exercises

Final numerical answers are provided to the end-of-Focus exercises.

Password protected resources available for registered adopters:

Figures and Tables of data

If you wish to use the figures or tables in a lecture you may do so without charge (but not for commercial purposes without specific permission). Almost all are available in PowerPoint[®] format.

Test bank

A ready-made, electronic testing resource is provided, which is fully customizable and contains feedback for students.

Preface

We want our readers to have an instructive and enjoyable experience. With that guiding principle in mind we have developed a new presentation that provides flexibility for the instructor and accessibility for the student.

Gone are chapters. In their place we have Focuses, which gather together major areas of physical chemistry. Gone are chapter sections. In their place we have Topics, which describe discrete aspects of the material in the Focus. The division of a Focus into Topics that can, in principle, be re-ordered or simply omitted according to the judgement, needs, and inclination of the instructor, gives great flexibility when matching the text to the course. Of course, we would not regard some sequences as appropriate, but we leave that judgement to the instructor. For the student, the material is broken up into smaller fragments, which should help to make the subject more accessible than when confronted with a big new subject spread over dozens of pages. We provide a succession of hills rather than a single mountain range. We also consider the use of Topics to reduce a student's apprehension when some are omitted by the instructor.

We are aware that a possible criticism of this approach is the loss of intellectual cohesion. With that in mind, each Focus begins with a preamble in which the development in the Topics is outlined and their interdependence explained.

On a smaller scale, we have put ourselves into what we imagine to be the mind of the student, who sometimes cannot see the point of a particular subject. Each Topic opens with the kind of question a student is likely to ask: What is the importance of this material? We then give a brief (but not exhaustive) indication of why it is worth paying attention. Then there is the other typical, but often unarticulated question: What do we need to know already? Here we make suggestions about the material that would be useful, and sometimes essential, to know while working through the Topic.

Many of the innovations introduced in earlier editions that users have found useful have been retained, sometimes with elaboration. For instance, we are fully aware of the fear that mathematics inspires, and have added more steps and a different and more helpful kind of annotation to the equations. *The chemist's toolkits*, the mathematical tools necessary at that point, have been enhanced: they are intended to remind the reader of various techniques and concepts (including some from introductory chemistry and physics). The *Worked Examples* have been redeveloped to help students acquire a systematic approach to setting up the solution by having a section called *Collect your thoughts* in each one.

Some of the Toolkits replace the *Foundations* section of earlier editions. We consider that appropriate, as the reminder is there at the point of use rather than as a probably forgotten prelude. In its place we have a *Prologue* which establishes, with a very light touch, three important concepts that pervade the whole of chemistry: energy, temperature, and the Boltzmann distribution. With that material in mind, much of physical chemistry falls into place. We do not see the Prologue as a Topic in its own right, but more as a window for viewing much of what follows (where all three concepts are elaborated).

As always in the preparation of a new edition we have relied heavily on advice from users throughout the world, our numerous translators into other languages, and colleagues who have given their time in the reviewing process. For this edition we have collected comments from student panels, and we are very grateful to them for putting us so closely in touch with their attitudes, difficulties, and needs. We would particularly like to thank David Smith, of Bristol University, for the care with which he reviewed the drafts and his extensive work on the endof-chapter Exercises, which he reviewed in detail and augmented where he felt it appropriate.

Our publishers have, as always, been a pleasure to work with, and supportive throughout.

PWA JdeP

About the authors

Peter Atkins is a fellow of Lincoln College in the University of Oxford and the author of about seventy books for students and a general audience. His texts are market leaders around the globe. A frequent lecturer in the United States and throughout the world, he has held visiting professorships in France, Israel, Japan, China, and New Zealand. He was the founding chairman of the Committee on Chemistry Education of the International Union of Pure and Applied Chemistry and was a member of IUPAC's Physical and Biophysical Chemistry Division.

Julio de Paula is Professor of Chemistry at Lewis & Clark College. A native of Brazil, Professor de Paula received a B.A. degree in chemistry from Rutgers, The State University of New Jersey, and a Ph.D. in biophysical chemistry from Yale University. His research activities encompass the areas of molecular spectroscopy, biophysical chemistry, and nanoscience. He has taught courses in general chemistry, physical chemistry, biophysical chemistry, instrumental analysis, and writing. He is the recipient of a Henry Dreyfus Teacher-Scholar Award, and has been named a Cottrell Scholar by the Research Corporation for Science Advancement.

Acknowledgements

The authors have received a great deal of help during the preparation and production of this text and wish to thank all their colleagues who have made such thought-provoking and useful suggestions. In particular, we wish to record publicly our thanks to:

Christine Aikens, Kansas State University William Alexander, University of Memphis Chris Amodio, University of Surrey Alexander Angerhofer, University of Florida Dmitri Babikov, Marquette University Kyle Backstrand, Viterbo University Thilo Behrends, Utrecht University Petia Bobadova-Parvanova, Rockhurst University Terry Brack, Hofstra University Jorge N. Chacón, University of the West of Scotland Andres Cisneros, Wayne State University Anders Ericsson, Uppsala University Brian Frink, Lakeland College Qingfeng Ge, Southern Illinois University Robert Glinski, Tennessee Technological University Fiona Gray, University of St Andrews Gerhard Groebner, Umeå University Alex Grushow, Rider University Jan Gryko, Jacksonville State University Anton Guliaev, San Francisco State University Todd Hamilton, Georgetown College Lisandro Hernandez de la Pena, Kettering University Grant Hill, University of Sheffield Jonathan Howse, University of Sheffield

Meez Islam, Teesside University Jeffrey Joens, Florida International University Kameron Jorgensen, Texas A&M International University Peter Karadakov, University of York Yu Kay Law, Indiana University East Arthur Low, Tarleton State Mike Lyons, Trinity College Dublin Jeffrey Madura, Duquesne University David Magers, Mississippi College Tom Martin, OUP Student Panel David McGarvey, Keele University Christine Morales, Emporia State University Ross Nord, Eastern Michigan University Maria Pacheco, Buffalo State College Peter Palenchar, Villanova University Martin Paterson, Heriot-Watt University Stephen Price, University College London Subrayal Reddy, University of Surrey John Reilly, Florida Gulf Coast University Marina Roginskaya, East Tennessee State University Richard Schwenz, University of Northern Colorado Jon Serra, West Liberty University Yinghong Sheng, Florida Gulf Coast University **Justin Stace**, Belmont University Robert Stolk, Utrecht University of Applied Sciences Bradley Stone, San Jose State University Alex Volkov, Oakwood University Barry L. Westcott, Central Connecticut State University Chris Wiebe, University of Winnipeg Darren Williams, Sam Houston State University

We are greatly indebted to Michael Clugston, who read the proofs with a great deal of care and attention, so saving us from much public embarrassment.

Brief contents

	Conventions	xxii
	List of The chemist's toolkits	xxiii
	List of tables	xxiv
	List of Impacts	xxvi
	Energy, temperature, and chemistry	1
FOCUS 1	The properties of gases	3
FOCUS 2	The First Law of thermodynamics	37
FOCUS 3	The Second Law of thermodynamics	87
FOCUS 4	Physical transformations	115
FOCUS 5	Chemical change	175
FOCUS 6	Chemical kinetics	249
FOCUS 7	Quantum theory	315
FOCUS 8	Atomic structure	355
FOCUS 9	The chemical bond	389
FOCUS 10	Molecular interactions	427
FOCUS 11	Molecular spectroscopy	447
FOCUS 12	Statistical thermodynamics	499
FOCUS 13	Magnetic resonance	523
FOCUS 14	Macromolecules and aggregates	547
FOCUS 15	Solids	571
	Resource section	603
Index		617

Full contents

Cor	ventio	ons	xxii
List	of The	e chemist's toolkits	xxiii
List	of tab	les	xxiv
List	ofImp	pacts	xxvi
Ene	ergy, te	mperature, and chemistry	1
		erties of gases	3
1A	The p	erfect gas	4
	1A.1	The perfect gas equation of state	6
	1A.2	Using the perfect gas law	9
	1A.3	Mixtures of gases: partial pressures	10
	CHEC	KLIST OF KEY CONCEPTS	12
1B	The k	inetic model of gases	13
	1B.1	•	
		to the kinetic model	13
	1B.2	The root-mean-square speed of gas molecules	16
	1B.3	The Maxwell distribution of speeds	16
	1B.4	Diffusion and effusion	18
	1B.5	Molecular collisions	19
	CHECI	KLIST OF KEY CONCEPTS	22
1C	Real o	lases	23
	1C.1		24
	1C.2	The critical temperature	24
	1C.3	The compression factor	26
	1C.4	The virial equation of state	27
	1C.5	The van der Waals equation	28
	10.6		30
	 1A.1 The perfect gas equation of state 1A.2 Using the perfect gas law 1A.3 Mixtures of gases: partial pressures CHECKLIST OF KEY CONCEPTS 3 The kinetic model of gases 1B.1 The pressure of a gas according to the kinetic model 1B.2 The root-mean-square speed of gas molecules 1B.3 The Maxwell distribution of speeds 1B.4 Diffusion and effusion 1B.5 Molecular collisions CHECKLIST OF KEY CONCEPTS C Real gases 1C.1 Molecular interactions 1C.2 The critical temperature 1C.3 The compression factor 1C.4 The virial equation of state 		
		-	33

FOCUS 2

The	First	Law of thermodynamics	37
2A	Work		39
	2A.1	Systems and surroundings	40
	2A.2	Expansion work	41
	2A.3	Reversible expansion	43
	CHEC	KLIST OF KEY CONCEPTS	46
2B	Heat		47
	2B.1	Conventions	47
	2B.2	Heat capacity	48
	2B.3	Calorimetry	49
	2B.4	Heat influx during expansion	51
	CHEC	KLIST OF KEY CONCEPTS	51
2C	Intern	al energy	52
	2C.1	The internal energy	52
	2C.2	The internal energy as a state function	53
	2C.3	Changes in the internal energy	53
	2C.4	The molecular basis of the	
		internal energy	55
	CHEC	KLIST OF KEY CONCEPTS	56
2D	Entha	lpy	57
	2D.1	The definition of enthalpy	58
	2D.2	Changes in enthalpy	58
	2D.3		
	01150	of the enthalpy	59
	CHEC	KLIST OF KEY CONCEPTS	61
2E	-	cal change	62
	2E.1	The enthalpy of phase transition	62
	2E.2	lonization and electron attachment	66
	CHEC	KLIST OF KEY CONCEPTS	68
2F		ical change	69
	2F.1	Bond dissociation	69
	2F.2	Enthalpies of combustion	71
	2F.3	The combination of reaction enthalpies	73
	2F.4	Standard enthalpies of formation	74
	2F.5	The variation of reaction enthalpy	-
	0	with temperature	76
	CHEC	KLIST OF KEY CONCEPTS	78
		discussion questions, and projects	79
010	DICITIS.		13

	CUS 3 e Secor	d Law of thermodynamics	87
3A	Entrop	DY	88
	3A.1	The direction of spontaneous change	88
	3A.2	Entropy and the Second Law	89
	3A.3	Heat engines, refrigerators, and	
	CHECK	heat pumps LIST OF KEY CONCEPTS	90 92
	CHECK	LIST OF RETCONCEPTS	92
3B	Entrop	by changes	93
	3B.1	The entropy change accompanying a change in volume	93
	3B.2	The entropy change accompanying a change in temperature	94
	3B.3	The entropy change accompanying a phase transition	96
	3B.4	Entropy changes in the surroundings	98
		LIST OF KEY CONCEPTS	99
~~			
3C		ute entropy	100
	3C.1	The Third Law of thermodynamics	100
	3C.2	The molecular interpretation of entropy	102
	3C.3	Residual entropy LIST OF KEY CONCEPTS	104 105
	CHECK	LIST OF REF CONCEPTS	105
3D	The G	ibbs energy	106
	3D.1	The standard reaction entropy	106
	3D.2	The spontaneity of chemical reactions	107
	3D.3	Focusing on the system	107
	3D.4	Properties of the Gibbs energy	108
	CHECK	LIST OF KEY CONCEPTS	110
Exe	ercises,	discussion questions,	
pro	blems,	and projects	111
FO	CUS 4		
		ransformations	115
4A	The th	ermodynamics of transition	117
	4A.1	The condition of stability	117
	4A.2	The variation of Gibbs energy	
		with pressure	118
	4A.3	The variation of Gibbs energy with	100
	10 1	temperature	120
	4A.4	The Gibbs–Helmholtz equation LIST OF KEY CONCEPTS	122
	CHECK	LIST OF RET CONCEPTS	123

4B	Phase	diagrams of pure substances
	4B.1	Phase boundaries
	4B.2	The location of phase boundaries

	4B.3	Characteristic points	130
	4B.4	The phase rule	131
	4B.5	Phase diagrams of typical materials	133
	CHECK	KLIST OF KEY CONCEPTS	135
4C	Partia	l molar quantities	136
	4C.1	Partial molar volume	136
	4C.2	The chemical potential	137
	4C.3	Spontaneous mixing	139
	CHECK	KLIST OF KEY CONCEPTS	141
4D	Soluti	ons	142
	4D.1	Ideal solutions	142
	4D.2	The chemical potential of the solvent	144
	4D.3	Ideal-dilute solutions	145
	4D.4	The chemical potential of the solute	147
	4D.5	Real solutions: activities	149
	CHECK	KLIST OF KEY CONCEPTS	150
4E	Collig	ative properties	151
	4E.1	The modification of boiling and	
		freezing points	151
	4E.2	Osmosis	154
	CHECK	KLIST OF KEY CONCEPTS	157
4F	Phase	diagrams of mixtures	158
	4F.1	Mixtures of volatile liquids	158
	4F.2	Liquid–liquid phase diagrams	160
	4F.3	Liquid–solid phase diagrams	162
	4F.4	Zone refining	164
	4F.5	The Nernst distribution law	165
	CHECK	KLIST OF KEY CONCEPTS	166
		discussion questions,	167
pro	viems,	and projects	10/

FOCUS 5

124 124

126

Chemical change

5B.2

175

187

5A	The th	nermodynamics of reaction	177
	5A.1	The reaction Gibbs energy	177
	5A.2	The variation of $\Delta_r G$ with composition	179
	5A.3	Reactions at equilibrium	180
	5A.4	The standard reaction Gibbs energy	183
	CHECI	KLIST OF KEY CONCEPTS	184
5B	The e	quilibrium constant	185
	5B.1	The composition at equilibrium	185

The equilibrium constant in terms of

concentration

	5B.3	The molecular interpretation of	
		equilibrium constants	188
	CHECK	LIST OF KEY CONCEPTS	189
5C	Respon	nse to conditions	190
	5C.1	The effect of temperature	190
	5C.2		192
		The presence of a catalyst	194
		LIST OF KEY CONCEPTS	194
	CHECK		104
5D	Proton	transfer equilibria	195
	5D.1	Brønsted–Lowry theory	195
	5D.2	Protonation and deprotonation	196
	CHECK	LIST OF KEY CONCEPTS	201
5E		otic acids	202
	5E.1	Successive deprotonation	202
	5E.2		202
	CHECK	LIST OF KEY CONCEPTS	205
5F	Acid-b	ase equilibria of salts in water	206
	5F.1	The pH of salt solutions	206
	5F.2	Acid–base titrations	208
	5F.3	Buffer action	211
		LIST OF KEY CONCEPTS	212
5G	Solubi	lity equilibria	213
	5G.1	The solubility constant	213
	5G.2	The common-ion effect	214
	00.2		
	5G.3	The effect of added salts on solubility	215
	5G.3	The effect of added salts on solubility LIST OF KEY CONCEPTS	215 216
54	5G.3 CHECK	LIST OF KEY CONCEPTS	216
5H	5G.3 CHECK Ions in	LIST OF KEY CONCEPTS	216 217
5H	5G.3 CHECK Ions in 5H.1	LIST OF KEY CONCEPTS solution Mean activity coefficients	216 217 218
5H	5G.3 CHECK lons in 5H.1 5H.2	LIST OF KEY CONCEPTS solution Mean activity coefficients The Debye–Hückel theory	216 217 218 219
5H	5G.3 CHECK Ions in 5H.1 5H.2 5H.3	LIST OF KEY CONCEPTS solution Mean activity coefficients	216 217 218
5H	5G.3 CHECK Ions in 5H.1 5H.2 5H.3	LIST OF KEY CONCEPTS solution Mean activity coefficients The Debye–Hückel theory The migration of ions	216 217 218 219 220
5H 5I	5G.3 CHECK Ions in 5H.1 5H.2 5H.3 CHECK	LIST OF KEY CONCEPTS solution Mean activity coefficients The Debye–Hückel theory The migration of ions LIST OF KEY CONCEPTS Schemical cells	216 217 218 219 220
	5G.3 CHECK Ions in 5H.1 5H.2 5H.3 CHECK Electro 5I.1	LIST OF KEY CONCEPTS solution Mean activity coefficients The Debye–Hückel theory The migration of ions LIST OF KEY CONCEPTS chemical cells Half-reactions and electrodes	216 217 218 219 220 223
	5G.3 CHECK Ions in 5H.1 5H.2 5H.3 CHECK	LIST OF KEY CONCEPTS solution Mean activity coefficients The Debye–Hückel theory The migration of ions LIST OF KEY CONCEPTS bchemical cells Half-reactions and electrodes Reactions at electrodes	216 217 218 219 220 223 224
	5G.3 CHECK 5H.1 5H.2 5H.3 CHECK Electro 5I.1 5I.2 5I.3	LIST OF KEY CONCEPTS solution Mean activity coefficients The Debye–Hückel theory The migration of ions LIST OF KEY CONCEPTS bechemical cells Half-reactions and electrodes Reactions at electrodes Varieties of cell	216 217 218 220 223 223 224 225
	5G.3 CHECK 5H.1 5H.2 5H.3 CHECK Electro 5I.1 5I.2	LIST OF KEY CONCEPTS solution Mean activity coefficients The Debye–Hückel theory The migration of ions LIST OF KEY CONCEPTS bchemical cells Half-reactions and electrodes Reactions at electrodes	216 217 218 219 220 223 223 224 225 227
	5G.3 CHECK 5H.1 5H.2 5H.3 CHECK Electro 5I.1 5I.2 5I.3 5I.4 5I.5	LIST OF KEY CONCEPTS solution Mean activity coefficients The Debye–Hückel theory The migration of ions LIST OF KEY CONCEPTS chemical cells Half-reactions and electrodes Reactions at electrodes Varieties of cell The cell reaction The cell potential	216 217 218 219 220 223 223 224 225 227 229
	5G.3 CHECK 5H.1 5H.2 5H.3 CHECK Electro 5I.1 5I.2 5I.3 5I.4 5I.5	LIST OF KEY CONCEPTS solution Mean activity coefficients The Debye–Hückel theory The migration of ions LIST OF KEY CONCEPTS chemical cells Half-reactions and electrodes Reactions at electrodes Varieties of cell The cell reaction	216 217 218 219 220 223 223 224 225 227 229 230
51	5G.3 CHECK Ions in 5H.1 5H.2 5H.3 CHECK 5I.1 5I.2 5I.3 5I.4 5I.5 CHECK	LIST OF KEY CONCEPTS solution Mean activity coefficients The Debye–Hückel theory The migration of ions LIST OF KEY CONCEPTS chemical cells Half-reactions and electrodes Reactions at electrodes Varieties of cell The cell reaction The cell potential LIST OF KEY CONCEPTS	216 217 218 220 223 224 225 227 229 230 230 232
	5G.3 CHECK Ions in 5H.1 5H.2 5H.3 CHECK 5I.1 5I.2 5I.3 5I.4 5I.5 CHECK Standa	LIST OF KEY CONCEPTS solution Mean activity coefficients The Debye–Hückel theory The migration of ions LIST OF KEY CONCEPTS chemical cells Half-reactions and electrodes Reactions at electrodes Varieties of cell The cell reaction The cell potential LIST OF KEY CONCEPTS ard potentials	216 217 218 220 223 224 225 227 229 230 230 232 232
51	5G.3 CHECK Ions in 5H.1 5H.2 5H.3 CHECK 5I.1 5I.2 5I.3 5I.4 5I.5 CHECK	LIST OF KEY CONCEPTS solution Mean activity coefficients The Debye–Hückel theory The migration of ions LIST OF KEY CONCEPTS chemical cells Half-reactions and electrodes Reactions at electrodes Varieties of cell The cell reaction The cell potential LIST OF KEY CONCEPTS	216 217 218 220 223 224 225 227 229 230 230 232 232

	5J.3	The variation of potential with pH	235
	5J.4	The electrochemical series	236
	5J.5	The combination of standard potentials	237
	5J.6	Thermodynamic data from standard	
		potentials	237
	CHECK	LIST OF KEY CONCEPTS	238
Exe	rcises, o	discussion questions,	
pro	blems, a	and projects	239
FO	CUS 6		
Che	emical k	kinetics	249
~	F		054
6A		cal chemical kinetics	251
	6A.1		251
	6A.2		252
	CHECK	LIST OF KEY CONCEPTS	255
6B	Rate la	ws	256
	6B.1	The rate constant	256
	6B.2	Reaction order	258
	6B.3	The determination of the rate law	259
	CHECK	LIST OF KEY CONCEPTS	261
6C	-	ated rate laws	262
	6C.1	Zeroth-order reactions	262
	6C.2	First-order reactions	262
	6C.3	Second-order reactions of the	
		type A \rightarrow products	264
	6C.4	Second-order reactions of the type	265
	6C.5	$A + B \rightarrow \text{products}$ Half-lives	265
		LIST OF KEY CONCEPTS	268
	ONLOR		200
6D		mperature dependence of	
		on rates	269
	6D.1	The Arrhenius parameters	269
	6D.2	Collision theory of gas-phase reactions	272
	6D.3	Transition-state theory	274
	CHECK	LIST OF KEY CONCEPTS	276
6E	The ap	proach to equilibrium	277
	6E.1	Equilibria and rates	277
	6E.2	Relaxation	279
	CHECK	LIST OF KEY CONCEPTS	280
	_		_
6F		on mechanisms	281
	6F.1	Elementary reactions	281
	6F.2	The formulation of rate laws	282
	6F.3	Consecutive reactions	283
	6F.4	Pre-equilibrium	284

	6F.5	The steady-state approximation	284
	6F.6	The rate-determining step	286
	6F.7	Kinetic control	286
	6F.8	Unimolecular reactions	287
	CHECI	KLIST OF KEY CONCEPTS	288
6G	React	ions in solution	289
	6G.1	Activation control and	
		diffusion control	289
	6G.2	Diffusion	290
	CHECI	KLIST OF KEY CONCEPTS	294
6H	Homo	ogeneous catalysis	295
	6H.1	The Michaelis–Menten mechanism	
		of enzyme catalysis	295
	6H.2	The analysis of rates of	
		enzyme-catalysed reactions	297
	CHECI	KLIST OF KEY CONCEPTS	299
61	Heter	ogeneous catalysis	300
	61.1	Physisorption and chemisorption	301
	61.2	Adsorption isotherms	302
	61.3	Mechanisms of surface-catalysed	
		reactions	305
	CHECI	KLIST OF KEY CONCEPTS	306
Exe	ercises,	discussion questions,	
pro	blems,	and projects	307
FO	CUS 7		
Qu	antum	theory	315
7A	The e	mergence of quantum theory	316
	7A.1	The evidence for discrete energies	317
	7A.2	The evidence for radiation	
		as particles	319
	7A.3	The evidence for particles as waves	320
	CHECI	KLIST OF KEY CONCEPTS	322
7B	The d	ynamics of microscopic systems	323
		The Schrödinger equation	323
	7B.2	The Born interpretation	326
	7B.3	The uncertainty principle	328
		KLIST OF KEY CONCEPTS	330
7C	Transl	ation	221
10	7C.1	Motion in one dimension	331
	7C.1 7C.2	Tunnelling	331 335
	7C.2 7C.3	Motion in two dimensions	335 336
		KLIST OF KEY CONCEPTS	339

7D	Rotat	ion	34
	7D.1	Rotation in two dimensions	34
	7D.2	Rotation in three dimensions	34
	CHECI	KLIST OF KEY CONCEPTS	34
7E	Vibrat	tion	34
	7E.1	The harmonic oscillator	34
	7E.2		34
	CHECI	KLIST OF KEY CONCEPTS	3
		discussion questions, and projects	35
FO	CUS 8		
		ructure	3
8A	Hydro	genic atoms	3
	8A.1	The permitted energies of hydrogenic atoms	3
	8A.2		3
	8A.3	The s orbitals	36
	8A.4	The p and d orbitals	3
		KLIST OF KEY CONCEPTS	3
8B	Many	-electron atoms	3
	8B.1	The orbital approximation	3
	8B.2	Electron spin	3
	8B.3	The Pauli principle	3
	8B.4	Penetration and shielding	3
	8B.5	The building-up principle	3
	8B.6	The occupation of d orbitals	3
	8B.7	The configurations of cations and anions	3
	8B.8	Self-consistent field orbitals	3
	CHECI	KLIST OF KEY CONCEPTS	3
8C	Period	lic trends of atomic properties	3
	8C.1	Atomic and ionic radii	3
	8C.2	lonization energy and electron affinity	3
	CHECI	KLIST OF KEY CONCEPTS	3
8D		ic spectroscopy	3
	8D.1	The spectra of hydrogenic atoms	3
	8D.2	The energies of many-electron atoms	3
	8D.3	Spin–orbit coupling	3
	8D.4	Selection rules for many-electron atoms	3
	CHECI	KLIST OF KEY CONCEPTS	3
		discussion questions, and projects	38
hin	DICITIS,	and projects	3

The	e chemi	ical bond	389
9A	Valend	ce bond theory	391
	9A.1	Diatomic molecules	392
	9A.2	Polyatomic molecules	394
	9A.3	Promotion and hybridization	395
	9A.4	Resonance	398
	9A.5	The language of valence bond theory	399
	CHECK	LIST OF KEY CONCEPTS	400
9B		ular orbital theory:	
		nuclear diatomics	401
	9B.1	The construction of molecular orbitals	401
	9B.2	Bonding and antibonding orbitals	403
	9B.3	Inversion symmetry	404
	9B.4	The chemical bond in molecular orbital theory	404
	9B.5	Many-electron homonuclear diatomics	404
	9B.6	The configurations of Period 2	400
		homonuclear diatomics	408
	9B.7	The criteria for building	
	0.150	molecular orbitals	409
	CHECK	LIST OF KEY CONCEPTS	410
9C	Molec diaton	ular orbital theory: heteronuclear	411
	9C 1	Polar bonds	411
	9C.2		412
	9C.3		414
		LIST OF KEY CONCEPTS	415
9D	Molec	ular orbital theory:	
	polyat	comic molecules	416
	9D.1	The molecular orbitals of H ₂ O	416
	9D.2	The Hückel method	417
	9D.3	The molecular orbitals of benzene	420
	9D.4	Computational chemistry	421
	CHECK	LIST OF KEY CONCEPTS	423
		discussion questions,	
pro	blems,	and projects	424
	CUS 10		
Мо	lecular	interactions	427
10A	Electri	c properties of molecules	428
	10A.1	Electric dipole moments	428
	10A.2		
		molecules	429
	10A.3	Polarizabilities	431
	CHECK	LIST OF KEY CONCEPTS	432

	FULL	CONTENTS	xix
--	------	----------	-----

10B	Interac	tions between molecules	433
	10B.1	Interactions between	
		partial charges	433
	10B.2	Charge-dipole interactions	434
	10B.3	Dipole-dipole interactions	435
	10B.4	Dipole-induced dipole interactions	437
	10B.5	Dispersion interactions	437
	10B.6	Hydrogen bonding	439
	10B.7	The hydrophobic effect	440
	10B.8	Modelling the total interaction	440
	CHECK	LIST OF KEY CONCEPTS	442
		liscussion questions,	
prol	blems, a	and projects	443
FOO	CUS 11		
Mo	ecular	spectroscopy	447
11A		al features of molecular	449
	spectro		449 450
		Spectrometers	
		Absorption and emission	451 455
		Raman scattering	
			455
	CHECK	LIST OF KEY CONCEPTS	457
11B	Rotatio	onal spectroscopy	458
	11B.1	The rotational energy levels of molecules	458
	11B.2	Forbidden and allowed rotational states	462
	11B.3	Populations at thermal equilibrium	463
	11B.4	Microwave spectroscopy	464
	11B.5	Rotational Raman spectra	466
	CHECK	LIST OF KEY CONCEPTS	467
11C	Vibrati	onal spectroscopy	468
	11C.1	The vibrations of molecules	468
	11C.2	Vibrational transitions	470
	11C.3	Anharmonicity	471
	11C.4	Vibrational Raman spectra of diatomic molecules	471
	11C.5	The vibrations of polyatomic molecules	472
	11C.6	Vibration-rotation spectra	474
	11C.7	Vibrational Raman spectra of	
		polyatomic molecules	475
	CHECK	LIST OF KEY CONCEPTS	476
11D	Electro	onic spectroscopy	477
	11D.1	Ultraviolet and visible spectra	477
	11D.2	Specific types of transitions	479

11D.3	Analysis of mixtures by electronic				
	spectroscopy	480			
11D.4	· · · · · · · · · · · · · · · · · · ·	481			
CHECK	LIST OF KEY CONCEPTS	483			
11E The de	11E The decay of excited states				
11E.1	Fluorescence and phosphorescence	485			
11E.2	Mechanism of decay of excited states	487			
11E.3	Quenching	488			
11E.4	Resonance energy transfer	490			
CHECK	LIST OF KEY CONCEPTS	491			
Exercises,	discussion questions,				
problems,	and projects	492			
500110.44					
FOCUS 12		400			
Statistical	thermodynamics	499			
12A The Bo	oltzmann distribution	500			
12A.1	The population of states	500			
12A.2	The general form of the Boltzmann distribution	501			
12A.3	The origins of the Boltzmann				
	distribution	502			
CHECK	LIST OF KEY CONCEPTS	503			
12B The pa	artition function	504			
12B.1	The interpretation of the partition function	504			
12B.2	The molecular partition function	506			
12B.3	The translational partition function	506			
12B.4	The rotational partition function	508			
12B.5	The vibrational partition function	509			
12B.6	The electronic partition function	510			
12B.7	The significance of the molecular				
	partition function	510			
CHECK	LIST OF KEY CONCEPTS	511			
12C The or	igin of thermodynamic properties	512			
12C.1	The internal energy	512			
12C.2	The heat capacity	514			
12C.3	The entropy	515			
12C.4	The Gibbs energy	516			
12C.5	The equilibrium constant	517			
CHECK	LIST OF KEY CONCEPTS	519			
	discussion questions,				
problems, and projects 52					

FOCUS 13

Magnetic resonance		523
13A Nuclea	ar magnetic resonance	524
13A.1	Nuclei in magnetic fields	524
13A.2	The resonance condition	526
13A.3	The technique	527
CHECK	LIST OF KEY CONCEPTS	528
13B The in	formation in NMR spectra	529
13B.1	The chemical shift	529
13B.2	The fine structure	532
13B.3	The origin of spin-spin splitting	534
13B.4	Spin relaxation	535
13B.5	Conformational conversion	
	and chemical exchange	536
CHECK	LIST OF KEY CONCEPTS	537
13C Electro	on paramagnetic resonance	539
13C.1	Electrons in magnetic fields	539
13C.2	The technique	540
13C.3	The <i>g</i> -value	541
13C.4	Hyperfine structure	541
CHECK	LIST OF KEY CONCEPTS	543
	discussion questions, and projects	544

FOCUS 14

Macromolecules and aggregates 547

14A Biolog	ical and synthetic macromolecules	548
14A.1	Average molar masses	548
14A.2	Models of structure	549
14A.3	Random coils	550
14A.4	Polypeptides and polynucleotides	552
14A.5	The prediction of structure	553
14A.6	Mechanical properties of polymers	555
14A.7	Thermal properties of polymers	557
CHECK	LIST OF KEY CONCEPTS	558
14B Mesop	hases and disperse systems	559
14B.1	Liquid crystals	559
14B.2	Classification of disperse systems	560
14B.3	Surface, structure, and stability	561
14B.4	The electric double layer	563
14B.5	Liquid surfaces and surfactants	565

Exercises, discussion questions, problems, and projects

CHECKLIST OF KEY CONCEPTS

568

567

FOCUS 15 Solids	5	571
15A Crysta	Il structure	572
15A.1	The identification of crystal planes	573
15A.2	The determination of structure	575
15A.3	Bragg's law	577
15A.4	Experimental techniques	577
CHECK	LIST OF KEY CONCEPTS	580
15B Bondi	ng in solids	581
15B.1	Metallic solids	581
15B.2	lonic solids	584
15B.3	The electronic structure of metallic	
	and ionic solids	586

		and ionic solids	000
	15B.4	The energetics of bonding in ionic	
		solids	587
	15B.5	Molecular solids	590
	15B.6	Covalent networks	591
CHECKLIST OF KEY CONCEPTS			592

15C The pr	operties of solids	593
15C.1	Electrical properties	593
15C.2	Superconductivity	595
15C.3	Optical properties	595
15C.4	Solid-state lasers	596
15C.5	Magnetic properties	597
CHECK	LIST OF KEY CONCEPTS	599
Exercises,	discussion questions,	
problems, and project		
Resource s	section	603
Part 1 Com	nmon integrals	604
Part 2 Unit	s	605
Part 3 Data	1	607
Index		617

Conventions

To avoid intermediate rounding errors, but to keep track of values in order to be aware of values and to spot numerical errors, we display intermediate results as *n.nnn*... and normally round the calculation only at the final step.

Blue terms are used when we want to identify a term in an equation. An entire quotient, numerator/ denominator, is coloured blue if the annotation refers to the entire term, not just to the numerator or denominator separately.

List of *The chemist's toolkits*

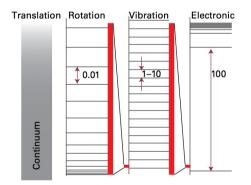
Number	Topic	Title	
1	1A	Quantities and units	5
2	1A	Linear relations and graphs	7
3	1B	Momentum and force	15
4	1B	Exponential and Gaussian functions	17
5	1C	Differentiation	23
6	1C	Power series and expansions	31
7	2A	Work and energy	39
8	2A	Integration	44
9	2B	Electrical charge, current, power, and energy	50
10	3C	Logarithms	104
11	4A	The rules of differentiation	123
12	4D	Measures of concentration	148
13	5B	Quadratic equations	187
14	5H	The Coulomb potential	217
15	5H	Resistance and conductance	221
16	51	Oxidation numbers	225
17	6G	Partial derivatives	292
18	7A	Electromagnetic waves	316
19	7B	Ordinary differential equations	324
20	7B	Operators	325
21	7C	Partial differential equations	338
22	7D	Angular momentum	340
23	7D	Vectors	345
24	8D	Addition and subtraction of vectors	382
25	9A	The Lewis theory of covalent bonding	391
26	9A	The VSEPR model	391
27	9D	Simultaneous equations	419
28	13A	Magnetic fields	525

List of tables

Table 1A.1	The gas constant in various units	6
Table 1A.2	The molar volumes of gases at standard ambient temperature and pressure (SATP: 298.15 K and 1 bar)	9
Table 1B.1	Collision cross-sections of atoms and molecules	21
Table 1C.1	The critical temperatures of gases	26
Table 1C.2	van der Waals parameters of gases	29
Table 2B.1	Heat capacities of common materials	49
Table 2D.1	Temperature dependence of heat capacities	60
Table 2E.1	Standard enthalpies of transition at the transition temperature	63
Table 2E.2	First and second (and some higher) standard enthalpies of ionization, $\Delta_{\rm ion} H^{\rm e}/(\rm kJ\ mol^{-1})$	66
Table 2E.3	Standard electron gain enthalpies of the main-group elements, $\Delta_{\rm eg} H^{\rm e} / (\rm kJ\ mol^{-1})$	68
Table 2F.1	Selected bond enthalpies at 298.15 K, $\Delta H(AB)/(kJ \text{ mol}^{-1})$	70
Table 2F.2	Mean bond enthalpies at 298.15 K, $\Delta H_{B}/(kJ \text{ mol}^{-1})$	71
Table 2F.3	Standard enthalpies of combustion at 298.15 K	72
Table 2F.4	Reference states of some elements	75
Table 2F.5	Standard enthalpies of formation at 298.15 K	75
Table 3B.1	Entropies of vaporization at 1 atm and the normal boiling point	97
Table 3C.1	Standard molar entropies of some substances at 298.15 K	102
Table 4B.1	Vapour pressures	129
Table 4B.2	Critical constants	130
Table 4D.1	Henry's law constants for gases dissolved in water at 25 $^{\circ}\text{C}$	146
Table 4D.2	Activities and standard states	149
Table 4E.1	Cryoscopic and ebullioscopic constants	152
Table 5A.1	Thermodynamic criteria of spontaneity	181
Table 5A.2	Standard Gibbs energies of formation at 298.15 K	183
Table 5D.1	Acidity and basicity constants at 298.15 K	198
Table 5E.1	Successive acidity constants of polyprotic acids at 298.15 K	203
Table 5G.1	Solubility constants at 298.15 K	214
Table 5H.1	lonic conductivities, $\mathcal{N}(mS\ m^2\ mol^{-1})$, at 298.15 K	221
Table 5H.2	lonic mobilities in water, $u/(10^{-8} \text{ m}^2 \text{ s}^{-1} \text{V}^{-1})$, at 298.15 K	223
Table 5I.1	Varieties of electrodes	228
Table 5J.1	Standard potentials at 298.15 K	234

Table 6A.1	Kinetic techniques for fast reactions	253
Table 6B.1	Kinetic data for first-order reactions	257
Table 6B.2	Kinetic data for second-order reactions	257
Table 6C.1	Integrated rate laws	268
Table 6D.1	Arrhenius parameters	270
Table 6G.1	Diffusion coefficients at 25 °C, $D/(10^{-9} \text{ m}^2 \text{ s}^{-1})$	291
Table 6G.2	Coefficients of viscosity at 25 °C, $\eta/(10^{-3} \text{ kg m}^{-1} \text{ s}^{-1})$	294
Table 7E.1	Harmonic oscillator wavefunctions	349
Table 8A.1	Hydrogenic wavefunctions	360
Table 8C.1	Atomic radii of main-group elements, r/pm	376
Table 8C.2	lonic radii, r/pm	377
Table 8C.3	First ionization energies of main-group elements, #eV	377
Table 8C.4	Electron affinities of main-group elements, E_{ea} /eV	378
Table 9A.1	Hybrid orbitals	397
Table 9C.1	Electronegativities of the main-group elements	412
Table 10A.1	Dipole moments, polarizabilities, and polarizability volumes	429
Table 10B.1	Potential energy of molecular interactions	433
Table 10B.2	Lennard-Jones parameters for the (12,6)-potential	441
Table 11B.1	Moments of inertia	459
Table 11C.1	Properties of diatomic molecules	471
Table 11D.1	Colour, frequency, and energy of light	477
Table 13A.1	Nuclear constitution and the nuclear spin quantum number	524
Table 13A.2	Nuclear spin properties	525
Table 14A.1	Interactions in macromolecules	554
Table 14B.1	Surface tensions of liquids at 293 K	565
Table 15A.1	The essential symmetries of the seven crystal systems	573
Table 15B.1	Radius ratio and crystal type	585
Table 15B.2	lonic radii, r/pm	585
Table 15B.3	Lattice enthalpies, $\Delta H^{\circ}_{L}/(kJ mol^{-1})$	588
Table 15B.4	Madelung constants	590
Table 15C.1	Magnetic susceptibilities at 298 K	598

List of Impacts

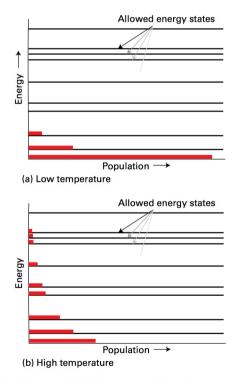

The Impacts are available at www.oxfordtextbooks.co.uk/orc/echem7e/.

IMPACT 1	ON ENVIRONMENTAL SCIENCE: The gas laws and the weather
IMPACT 2	ON TECHNOLOGY: Thermochemical aspects of fuels and foods
IMPACT 3	ON BIOLOGY: Life and the Second Law
IMPACT 4	ON TECHNOLOGY: Supercritical fluids
IMPACT 5	ON TECHNOLOGY: Fuel cells
IMPACT 6	ON ASTROPHYSICS: The spectroscopy of stars
IMPACT 7	ON UNDERSTANDING CHEMICAL PROPERTIES: Applications of molecular orbital theory
IMPACT 8	ON MEDICINE: Molecular recognition and drug design
IMPACT 9	ON ENVIRONMENTAL SCIENCE: Climate change
IMPACT 10	ON MEDICINE: Magnetic resonance imaging
IMPACT 11	ON BIOCHEMISTRY: Biological membranes
IMPACT 12	ON BIOCHEMISTRY: X-ray crystallography of biological macromolecules

Energy, temperature, and chemistry

The concept of energy occurs throughout chemistry. Some reactions release energy; others absorb it. Bond formation is accompanied by a lowering of energy; bond breaking requires energy. Almost every structure and almost every reaction can be discussed in terms of energy, and the precise meaning of the term and its role will emerge in the course of this text.

One very important feature of energy that should be kept in mind at all times is that, except in certain cases, the energy of an object (specifically an atom or molecule) cannot have an arbitrary value. That is, energy is quantized, restricted to certain values. The separation between these 'energy levels' depends on the type of motion responsible for the energy and on the characteristics of the object, such as its mass. The first illustration summarizes the relative sizes of the characteristic energy separations for four types of molecular motion: 'translation' refers to the motion through space of a molecule in a large container, 'rotation' is motion around an axis through the molecule, 'vibration' is a periodic distortion of the molecule (for example, the stretching of bonds or bending of bond angle), and 'electronic' denotes the energies of electrons in the molecule. (Only the relative sizes of the energy separations are shown, the text will develop their actual sizes.)



The energy level separations typical of translational, rotational, vibrational, and electronic motion. Only the relative sizes of the energy separations are shown.

In a typical sample of matter, the atoms or molecules occupy these levels, with most molecules in the lower energy states and progressively fewer at higher energies. The states are populated in accord with the 'Boltzmann distribution', which gives the population, N_{ii} of any state of the system regardless of its origin (whatever the substance and whether it is due to translation, rotation, vibration, or any other mode of motion) in terms of the energy of the state, ε_{ii} , and the absolute temperature, T:

$$N_i \propto e^{-\varepsilon_i/kT}$$

In this expression, k is a fundamental constant now called Boltzmann's constant (it is listed inside the front cover). The second illustration shows two typical consequences of this expression, the red bars indicating the relative population of each state, one at low temperature, the other at high temperature. The Boltzmann distribution clarifies the meaning of 'temperature', for it is seen to be the single parameter that governs the spread of populations over the available energy states.

The Boltzmann distribution of populations for a system at two temperatures. (a) At low temperatures, most molecules are in states of low energy. (b) At high temperatures, some molecules can populate states of high energy.

As can be seen from the second illustration, at low temperature, most molecules are in states of low energy. This feature is hugely important for chemistry, as it means that few molecules have enough energy to change by breaking bonds and forming new compounds: at low temperatures matter survives unchanged. However, at high temperatures some molecules have such high energy that they can undergo change. This feature is also hugely important for chemistry, for it enables chemical reaction. Thus, the Boltzmann distribution underlies the two major aspects of chemistry: the persistence of structure and the possibility of change. Its consequences will be seen throughout this text.